Парадокс Зенона



Парадоксы множества.


Со времен Пифагора время и пространство рассматривались, с математической точки зрения, как составленные из множества точек и моментов. Однако они обладают также свойством, которое легче ощутить, нежели определить, а именно «непрерывностью». С помощью ряда парадоксов Зенон стремился доказать невозможность разделения непрерывности на точки или моменты. Его рассуждение сводится к следующему: предположим, что деление проведено нами до конца. Тогда верно одно из двух: либо мы имеем в остатке наименьшие возможные части или величины, которые неделимы, однако бесконечны по своему количеству, либо деление привело нас к частям, не имеющим величины, т.е. обратившимся в ничто, ибо непрерывность, будучи однородной, должна быть делимой повсюду, а не так, чтобы в одной своей части быть делимой, а в другой – нет. Однако оба результата нелепы: первый потому, что процесс деления нельзя считать законченным, пока в остатке – части, обладающие величиной, второй потому, что в таком случае изначальное целое было бы образовано из ничто. Симплиций приписывает это рассуждение Пармениду, однако кажется более вероятным, что оно принадлежит Зенону. 
Например, в Метафизике Аристотеля говорится: «Если единое само по себе неделимо, то по утверждению Зенона оно должно быть ничем, ибо он отрицает, чтобы то, что не увеличивается при прибавлении и не уменьшается при отнятии могло бы вообще существовать – разумеется, по той причине, что все существующее обладает пространственными размерами». В более полном виде этот довод против множественности неделимых величин приводит Филопон: «Зенон, поддерживая своего учителя, старался доказать, что все сущее должно быть единым и неподвижным. Доказательство свое он основывал на бесконечной делимости любой непрерывности. Именно, утверждал он, если сущее не будет единым и неделимым, но может делиться на множество, единого по сути вообще не будет (ибо если непрерывность можно делить, это будет означать, что ее можно делить до бесконечности), а если ничто не будет по сути единым, невозможно и множество, поскольку множество составлено из многих единиц. 
Итак, сущее не может быть разделено на множество, следовательно, есть только единое. Это доказательство может строиться и по-другому, а именно: если не будет сущего, которое неделимо и едино, не будет и множества, ибо множество состоит из многих единиц. А ведь каждая единица либо едина и неделима, либо сама делится на множество. Но если она едина и неделима, Вселенная составлена из неделимых величин, если же единицы сами подлежат делению, мы будем задавать тот же самый вопрос относительно каждой из подлежащих делению единиц, и так до бесконечности. Таким образом, если существующие вещи множественны, Вселенная окажется образованной бесконечным числом бесконечностей. Но поскольку этот вывод нелеп, сущее должно быть единым, а быть множественным ему невозможно, ведь тогда придется каждую единицу делить бесконечное число раз, что нелепо».
Симплиций приписывает Зенону несколько видоизмененный вариант того же аргумента: «Если множество существует, оно должно быть точно таким, каково оно есть, не больше и не меньше. Однако, если оно таково, каково есть, оно будет конечным. Но если множество существует, вещи бесконечны по числу, потому что между ними всегда будут обнаруживаться еще другие, а между теми еще и еще. Таким образом, вещи бесконечны по числу».
Рассуждения о множественности были направлены против соперничавшей с элеатами школы, вероятнее всего, против пифагорейцев, которые полагали, что величина или протяженность составлена из неделимых частей. Зенон считал, что эта школа полагает, будто непрерывные величины и до бесконечности делимы и конечным образом разделены. Предельные элементы, из которых, как предполагалось, состояло множество, имели, с одной стороны, свойства геометрической единицы – точки; с другой – они обладали некоторыми свойствами числового единства – числа. Подобно тому как из повторных прибавлений единицы строится числовой ряд, линия считалась составленной многократным прибавлением точки к точке. 
Аристотель приводит следующее пифагорейское определение точки: «Единица, имеющая положение» или «Единица, взятая в пространстве». Это означает, что пифагореизм усвоил своего рода числовой атомизм, с точки зрения которого геометрическое тело не отличается от физического. Парадоксы Зенона и открытие несоизмеримых геометрических величин (ок. 425 до н.э.) привели к возникновению непреодолимого разрыва между арифметической дискретностью и геометрической непрерывностью. В физике существовало два в чем-то аналогичных лагеря: атомисты, отрицавшие бесконечную делимость материи, и последователи Аристотеля, которые ее отстаивали. Аристотель вновь и вновь разрешает парадоксы Зенона как для геометрии, так и для физики, утверждая, что бесконечно малое существует лишь в потенции, но не в реальности. Для современной математики такой ответ неприемлем. Современный анализ бесконечности, в особенности в трудах Г.Кантора, привел к определению континуума, лишающему антиномии Зенона парадоксальности.
***


Движение невозможно. В частности, невозможно пересечь комнату, так как для этого нужно сначала пересечь половину комнаты, затем половину оставшегося пути, затем половину того, что осталось, затем половину оставшегося...

Зенон Элейский принадлежал к той греческой философской школе, которая учила, что любое изменение в мире иллюзорно, а бытие едино и неизменно. Его парадокс (сформулированный в виде четырех апорий (от греч. aporia «безвыходность»), породивших с тех пор еще примерно сорок различных вариантов) показывает, что движение, образец «видимого» изменения, логически невозможно.

Большинству современных читателей парадокс Зенона знаком именно в приведенной выше формулировке (ее иногда называют дихотомией — от греч. dichotomia «разделение надвое»). Чтобы пересечь комнату, сначала нужно преодолеть половину пути. Но затем нужно преодолеть половину того, что осталось, затем половину того, что осталось после этого, и так далее. Это деление пополам будет продолжаться до бесконечности, из чего делается вывод, что вам никогда не удастся пересечь комнату.

Апория, известная под названием Ахилл, еще более впечатляюща. Древнегреческий герой Ахилл собирается состязаться в беге с черепахой. Если черепаха стартует немного раньше Ахилла, то ему, чтобы ее догнать, сначала нужно добежать до места ее старта. Но к тому моменту, как он туда доберется, черепаха проползет некоторое расстояние, которое нужно будет преодолеть Ахиллу, прежде чем догнать черепаху. Но за это время черепаха уползет вперед еще на некоторое расстояние. А поскольку число таких отрезков бесконечно, быстроногий Ахилл никогда не догонит черепаху.

Вот еще одна апория, словами Зенона:

Если что-то движется, то оно движется либо в том месте, которое оно занимает, либо в том месте, где его нет. Однако оно не может двигаться в том месте, которое оно занимает (так как в каждый момент времени оно занимает все это место), но оно также не может двигаться и в том месте, где его нет. Следовательно, движение невозможно.

Этот парадокс называется стрела (в каждый момент времени летящая стрела занимает место, равное ей по протяженности, следовательно она не движется).

Наконец, существует четвертая апория, в которой речь идет о двух равных по длине колоннах людей, движущихся параллельно с равной скоростью в противоположных направлениях. Зенон утверждает, что время, за которое колонны пройдут друг мимо друга, составляет половину времени, нужного одному человеку, чтобы пройти мимо всей колонны.

Из этих четырех апорий первые три наиболее известны и наиболее парадоксальны. Четвертая просто связана с неправильным пониманием природы относительного движения.

Самый грубый и неизящный способ опровергнуть парадокс Зенона — это встать и пересечь комнату, обогнать черепаху или выпустить стрелу. Но это никак не затронет хода его рассуждений. Вплоть до XVII века мыслители не могли найти ключ к опровержению его хитроумной логики. Проблема была разрешена только после того, как Исаак Ньютон и Готфрид Лейбниц изложили идею дифференциального исчисления, которое оперирует понятием предел; после того как стала понятна разница между разбиением пространства и разбиением времени; наконец, после того как научились обращаться с бесконечными и бесконечно малыми величинами.

Возьмем пример с пересечением комнаты. Действительно, в каждой точке пути вам надо пройти половину оставшегося пути, но только на это вам понадобится в два раза меньше времени. Чем меньший путь осталось пройти, тем меньше времени на это понадобится. Таким образом, вычисляя время, нужное для того, чтобы пересечь комнату, мы складываем бесконечное число бесконечно малых интервалов. Однако сумма всех этих интервалов не бесконечна (иначе пересечь комнату было бы невозможно), а равна некоторому конечному числу — и поэтому мы можем пересечь комнату за конечное время.

Такой ход доказательства аналогичен нахождению предела в дифференциальном исчислении. Попробуем объяснить идею предела в терминах парадокса Зенона. Если мы разделим расстояние, которое мы прошли, пересекая комнату, на время, которое мы на это потратили, мы получим среднюю скорость прохождения этого интервала. Но хотя и расстояние, и время уменьшаются (и в конечном счете стремятся к нулю), их отношение может быть конечным — собственно, это и есть скорость вашего движения. Когда и расстояние, и время стремятся к нулю, это отношение называется пределом скорости. В своем парадоксе Зенон ошибочно исходит из того, что, когда расстояние стремится к нулю, время остается прежним.

Забавное опровержение парадокса Зенона связано не с дифференциальным исчислением Ньютона, а с цитатой из скетча «Второго города», комедийного театра в Чикаго. В этом скетче лектор описывает различные философские проблемы. Дойдя до парадокса об Ахилле и черепахе, он произносит следующее:

Но это же просто смешно. Каждый сидящий в этой комнате может выиграть гонку с черепахой. Даже такой старый и степенный философ, как Бертран Рассел, — даже он может обогнать черепаху. Но если он и не сможет победить ее, он сможет ее перехитрить!


Предикация.

К числу более сомнительных парадоксов, приписываемых Зенону, относится рассуждение о предикации. В нем Зенон утверждает, что вещь не может в одно и то же время быть единой и иметь множество предикатов; таким же точно доводом пользовались афинские софисты. В Пармениде Платона это рассуждение выглядит так: «Если вещи множественны, они должны быть и подобными, и неподобными [неподобными, поскольку они не являются одним и тем же, и подобными, поскольку общее у них то, что они не являются одним и тем же]. Однако это невозможно, поскольку неподобные вещи не могут быть подобными, а подобные неподобными. Следовательно, вещи не могут быть множественны».

Здесь мы вновь видим критику множественности и столь характерный косвенный тип доказательства, и потому этот парадокс был также приписан Зенону.


Место.

Аристотель приписывает Зенону парадокс «Место», похожие рассуждения приводят Симплиций и Филопон в 6 в. н.э. В Физике Аристотеля эта проблема излагается следующим образом: «Далее, если существует место само по себе, где оно находится? Ведь затруднение, к которому приходит Зенон, нуждается в каком-то объяснении. Поскольку все, что существует, имеет место, очевидно, что место тоже должно иметь место и т.д. до бесконечности». Считается, что парадокс возникает здесь потому, что ничто не может содержаться само в себе или отличаться от самого себя. Филопон добавляет, что, показав самопротиворечивость понятия «места», Зенон желал доказать несостоятельность концепции множественности.


Зенон Элейский (Элеатский; др.-греч. Ζήνων ὁ Ἐλεάτης; ок. 490 до н. э.; Элея, Лукания, — ок. 430 до н. э.) — древнегреческий философ, ученик Парменида, представитель Элейской школы. Работы Зенона дошли до нас в изложении Аристотеля и комментаторов Аристотеля: Симпликия и Филопона. Зенон участвует также в диалоге Платона «Парменид», упоминается у Диогена Лаэртского, Плутарха, в Суде и многих других источниках. Аристотель называет его первым диалектиком.

Зенон Элейский, книжная гравюра XVII века



Сын Телевтагора, учился у Ксенофана и Парменида. Как сообщает Диоген Лаэртский, Зенон участвовал в заговоре против элейского тирана того времени, имя которого Диогену точно было неизвестно. Был арестован. На допросе, при требовании выдать сообщников, вёл себя стойко и даже, согласно Антисфену, откусил собственный язык и выплюнул его в лицо тирану. Присутствовавшие граждане были настолько потрясены произошедшим, что побили тирана камнями. По сведениям же Гермиппа, Зенон был тираном казнён: его бросили в ступу и истолкли в ней.
Диоген сообщает, что Зенон был любовником своего учителя, однако Афиней решительно опровергает подобное утверждение: «Но что всего отвратительнее и всего лживее — так это безо всякой нужды сказать, что согражданин Парменида Зенон был его любовником». Современники упоминали 40 апорий Зенона, до нас дошли 9, обсуждаемые у Аристотеля и его комментаторов. 


Историческое значение апорий Зенона

«Зенон вскрыл противоречия, в которые впадает мышление при попытке постигнуть бесконечное в понятиях. Его апории — это первые парадоксы, возникшие в связи с понятием бесконечного». Чёткое различение потенциальной и актуальной бесконечности у Аристотеля — во многом результат осмысления зеноновских апорий. Другие исторические заслуги элейских парадоксов:
«Рассуждения Зенона, изложенные точной и ясной прозой, являются первым в истории примером чисто логических доказательств. Именно этим определяется исключительно важное место Зенона в истории науки». Рассуждения по аналогии и поэтические фантазии, характерные для философов предыдущего поколения, сменились строгой дедуктивной логикой.
Ясное указание на то, что наше представление о реальности (включая математическое) может быть неадекватно этой реальности; в последующем наука столкнулась с многочисленными примерами справедливости этого тезиса.
Констатация того факта, что разделение непрерывности на отдельные точки (моменты), то есть смешение непрерывности и дискретности, есть противоречие.
Формирование античного атомизма было попыткой дать ответ на вопросы, поставленные апориями. В дальнейшем к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса, но сам факт непрерывного живого интереса к древней проблеме показывает её эвристическую плодотворность.
Проблемы, поставленные два с половиной тысячелетия назад и с тех пор многократно изученные, до сих пор не исчерпаны. Парадоксы Зенона затрагивают фундаментальные аспекты реальности — локализацию, движение, пространство и время. Время от времени обнаруживаются новые и неожиданные грани этих понятий, и каждое столетие находит полезным снова и снова возвращаться к Зенону. Процесс достижения их окончательного разрешения представляется бесконечным, и наше понимание окружающего мира всё ещё неполно и фрагментарно.

А. С. Пушкин посвятил парадоксам Зенона стихотворение «Движение» (1825).

Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день пред нами солнце ходит,
Однако ж прав упрямый Галилей.

В этом историческом анекдоте «мудрец брадатый» — это сторонник Зенона (комментатор Элиас, как сказано выше, приписывал аргументацию самому Зенону), а его оппонентом в разных вариантах анекдота выступает Диоген или Антисфен (оба они жили существенно позднее Зенона, так что с ним самим спорить не могли). Одна из версий анекдота, упоминаемая Гегелем, сообщает, что когда элеат признал аргумент Диогена убедительным, Диоген побил его палкой за чрезмерное доверие к очевидности.

Льюис Кэрролл написал диалог с логическими загадками под названием «Что Черепаха сказала Ахиллесу?».

Лев Толстой в III томе эпопеи «Война и мир» (начало 3-й части) пересказывает парадокс про Ахиллеса и черепаху и предлагает своё толкование: нельзя разделять непрерывное движение на «отдельные единицы», вместо этого надо использовать аппарат суммируемых «бесконечно-малых величин». Далее Толстой замечает: «в отыскании законов исторического движения происходит совершенно то же» и критикует попытки рассматривать непрерывный ход истории как происходящий по произволу отдельных влиятельных исторических лиц или сводить историю к отдельным крупным историческим событиям.

Поль Валери в поэме «Кладбище у моря» (Le Cimetiere Marin, 1920) писал:

Зенон Элейский, мыслию разящий,
Пронзил меня насквозь стрелой дрожащей,
Хоть сам её полётом пренебрег.
Рождён я звуком, поражён стрелою.
Ужель тень черепахи мне закроет
Недвижного Ахилла быстрый бег!

В основе сюжета фантастического рассказа Ф. Дика «О неутомимой лягушке» лежит апория «Дихотомия».

Апория про Ахиллеса неоднократно упоминается в произведениях Борхеса. Парадоксальная ситуация, описанная в ней, нашла также отражение в различных юмористических произведениях. Такэси Китано в 2008 году снял фильм «Ахиллес и черепаха».